|
|
: l0 m& u1 j, o# m1 P, R
[1] Liang, Qigang; Xu, Xuejun; Yuan, Liuyao Computing both upper and lower eigenvalue bounds by HDG methods. Comput. Methods Appl. Math. Accepted. (Special issue)
& D* q4 Q' c. s* g, o0 O9 a G. w$ p c- p7 U
[2] Liang, Qigang; Xu, Xuejun; Zhang, Shangyou On a sharp estimate of overlapping Schwarz methods in H(curl;Ω) and H(div;Ω). IMA J. Numer. Anal.45 (2025), no. 2,1009–1027.
# P7 S$ _) g; P& M- V+ S5 F# o ?7 X) \; @) k J
[3] Liang, Qigang; Wang, Wei; Xu, Xuejun A domain decomposition method for nonconforming finite element approximations of eigenvalue problems. Commun. Appl. Math. Comput.7 (2025), no. 2,606–636. (Special issue)' @+ d6 |( a2 ]4 D
; y! s$ ~9 y! j- z- m5 l
[4] Liang, Qigang; Wang, Wei; Xu, Xuejun A two-level block preconditioned Jacobi-Davidson method for multiple and clustered eigenvalues of elliptic operators. SIAM J. Numer. Anal. 62 (2024), no. 2, 998–1019.. D" {/ F0 @' r* x3 {: i( T7 g
& t# c) r; z# {
[5] Liang, Qigang; Xu, Xuejun A two-level preconditioned Helmholtz subspace iterative method for Maxwell eigenvalue problems. SIAM J. Numer. Anal. 61 (2023), no. 2, 642–674.
]+ l4 ` T4 N9 K% H' B
. g: O) t5 K8 x8 r! c1 C[6] Liang, Qigang; Xu, Xuejun; Yuan, Liuyao A weak Galerkin finite element method can compute both upper and lower eigenvalue bounds. J. Sci. Comput. 93 (2022), no. 1, Paper No. 19, 21 pp.
7 u* f' m3 l) A! B2 ?0 N8 n' K7 X6 u* e1 q
[7] Liang, Qigang; Xu, Xuejun A two-level preconditioned Helmholtz-Jacobi-Davidson method for the Maxwell eigenvalue problem. Math. Comp. 91 (2022), no. 334, 623–657.
' ~0 |& k, E# ]' t/ y* {" R* X. V8 A
# c. i5 `! I* {这个在咋样 |
|