|
|
/ }8 X" {8 j1 b) f' j) m! C[1] Liang, Qigang; Xu, Xuejun; Yuan, Liuyao Computing both upper and lower eigenvalue bounds by HDG methods. Comput. Methods Appl. Math. Accepted. (Special issue)
+ ~( F; |1 O" ?$ a
& f8 ?5 T7 i# V- C: d0 f[2] Liang, Qigang; Xu, Xuejun; Zhang, Shangyou On a sharp estimate of overlapping Schwarz methods in H(curl;Ω) and H(div;Ω). IMA J. Numer. Anal.45 (2025), no. 2,1009–1027.
T1 |* v( u k4 Z6 L" i6 D! } h8 L5 D
[3] Liang, Qigang; Wang, Wei; Xu, Xuejun A domain decomposition method for nonconforming finite element approximations of eigenvalue problems. Commun. Appl. Math. Comput.7 (2025), no. 2,606–636. (Special issue)- l3 N0 j) O$ R- }! b+ W
' ~0 U; B' t) t5 {4 O
[4] Liang, Qigang; Wang, Wei; Xu, Xuejun A two-level block preconditioned Jacobi-Davidson method for multiple and clustered eigenvalues of elliptic operators. SIAM J. Numer. Anal. 62 (2024), no. 2, 998–1019.. m$ k* r4 O# H% q8 Z' V: e" I
/ M& M, M* X: J0 k. _' o+ M[5] Liang, Qigang; Xu, Xuejun A two-level preconditioned Helmholtz subspace iterative method for Maxwell eigenvalue problems. SIAM J. Numer. Anal. 61 (2023), no. 2, 642–674.
7 b f8 b3 [4 i1 D" s) } P4 w: B6 E& C {* m
[6] Liang, Qigang; Xu, Xuejun; Yuan, Liuyao A weak Galerkin finite element method can compute both upper and lower eigenvalue bounds. J. Sci. Comput. 93 (2022), no. 1, Paper No. 19, 21 pp.- _2 S! Z6 E0 I0 Z
+ L! G& f% l. V1 [0 A5 M/ X[7] Liang, Qigang; Xu, Xuejun A two-level preconditioned Helmholtz-Jacobi-Davidson method for the Maxwell eigenvalue problem. Math. Comp. 91 (2022), no. 334, 623–657.! i8 K) `5 \2 d
+ v; b. N, S) I2 ]这个在咋样 |
|