本帖最后由 可乐加盐 于 2021-12-25 13:37 编辑
5 I& E. d0 a! l) q4 Y" t+ O: H
/ _/ f( R6 q! E$ p4 W; @Inventiones mathematicae
( W0 B v; B! Y# K- @Ren, H., Shen, W. A Dichotomy for the Weierstrass-type functions. Invent. math. 226, 1057–1100 (2021). https://doi.org/10.1007/s00222-021-01060-24 \4 M0 I$ D& R. l$ g' K
复旦大学,上海数学中心
+ q0 z t" g% R0 H# ^: _% ]Deng, Y., Nahmod, A.R. & Yue, H. Random tensors, propagation of randomness, and nonlinear dispersive equations. Invent. math. (2021). https://doi.org/10.1007/s00222-021-01084-8
% \6 Q( @$ m, F, n1 T; {+ Q上海科技大学(与国外机构合作)
+ }0 U- y9 x" {# |, iZhou, Y. Quasimap wall-crossing for GIT quotients. Invent. math. (2021). https://doi.org/10.1007/s00222-021-01071-z
( N' W0 }7 U* w/ Z上海数学中心$ T A' M: \& b; [
Chen, Q., Janda, F. & Ruan, Y. The logarithmic gauged linear sigma model. Invent. math. 225, 1077–1154 (2021). https://doi.org/10.1007/s00222-021-01044-2' I" U9 c- t* J% B6 D
浙江大学(与国外机构合作)
% f E; {- U* AChen, G. The J-equation and the supercritical deformed Hermitian–Yang–Mills equation. Invent. math. 225, 529–602 (2021). https://doi.org/10.1007/s00222-021-01035-31 {0 h5 v+ M3 k: w) {. c
中国科学技术大学8 X' |. _8 ]* f# [
Chan, K.Y. Homological branching law for <span class="MathJax" id="MathJax-Element-1711-Frame" tabindex="0" data-mathml="(GLn+1(F),GLn(F))" role="presentation" style="box-sizing: inherit; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">(GLn+1(F),GLn(F))(GLn+1(F),GLn(F)): projectivity and indecomposability. Invent. math. 225, 299–345 (2021). https://doi.org/10.1007/s00222-021-01033-5' p; X) \% ]3 ?, C1 ?: r
上海数学中心
. q: w; D( v; T, tGekhtman, I., Gerasimov, V., Potyagailo, L. et al. Martin boundary covers Floyd boundary. Invent. math. 223, 759–809 (2021). https://doi.org/10.1007/s00222-020-01015-z" T8 ^0 i$ k) R2 E
北京国际数学中心(与国外机构合作)8 w. e% P. j, [" K7 e7 V, q% h
Kurinczuk, R., Skodlerack, D. & Stevens, S. Endo-parameters for p-adic classical groups. Invent. math. 223, 597–723 (2021). https://doi.org/10.1007/s00222-020-00997-00 V5 v1 e4 h% m
上海科技大学(与国外机构合作)7 ?! r- ~. ^# E6 O
清华大学丘成桐数学中心
: P/ `) Z- F" O1 n/ TActa Mathematica The special fiber of the motivic deformation of the stable homotopy category is algebraic[size=13.3333px]Pages: 319 – 407 上海数学中心(与国外机构合作)
g% m/ g9 V8 C' ?+ D. c# GJournal Of The American Mathematical Society
5 h; f9 R! U4 _9 Z2 POn the constant scalar curvature Kähler metrics (I)—A priori estimates https://doi.org/10.1090/jams/967 中国科学技术大学(Supported by NSF)(与其他机构合作) On the constant scalar curvature Kähler metrics (II)—Existence results https://doi.org/10.1090/jams/966 中国科学技术大学(Supported by NSF)(与其他机构合作) Algebraicity of the metric tangent cones and equivariant K-stability https://doi.org/10.1090/jams/974 北京国际数学中心(第一单位)(与其他机构合作)
5 g% A* w& ]: E& L/ S# L) x 7 ?2 p1 U3 b. [1 O6 P. \# Z: W
Annals of Mathematics Rectifiability of singular sets of noncollapsed limit spaces with Ricci curvature bounded below 浙江大学(与国外机构合作) Isolation of cuspidal spectrum, with application to the Gan–Gross–Prasad conjecture 1 G2 z7 V6 U5 |1 W( J8 b
Polynomial structure of Gromov–Witten potential of quintic 33-folds
7 `2 ], u7 |! \7 x6 n2 V: Phttps://doi.org/10.4007/annals.2021.194.3.1! G% b8 F/ Y* i6 e
香港科技大学,北京国际数学中心,上海数学中心
4 j: }' {7 A F5 F9 {# O# Z: U$ t F3 {: _) I( M( }+ W
Global regularity for the Monge-Ampère equation with natural boundary condition
6 D9 k9 u4 C9 o0 c8 qhttps://doi.org/10.4007/annals.2021.194.3.4
3 } D6 v! D# g6 e$ }) _中国科学技术大学(与国外机构合作) - Z7 L7 a2 m* w. V: B5 t' X7 z
; o5 ~ B: a0 B" q# rChow groups and LL-derivatives of automorphic motives for unitary groups4 l1 j9 Q9 ~$ R) G) N9 |% h+ n
https://doi.org/10.4007/annals.2021.194.3.69 ^2 t. n; ~: C' k L0 h
浙江大学(与国外机构合作) + d, T, B6 V2 J- H
" C/ p0 A q& x, S
5 X9 M+ p- M8 q" B8 W, c; w
5 N" e B/ F1 J1 s2 ] |