本帖最后由 可乐加盐 于 2021-12-25 13:37 编辑
( O$ I! L# m/ ~# G) q4 a! e4 o% [ Z" E: ~, F& t
Inventiones mathematicae7 A8 _, s: \8 f6 v( \. c# b
Ren, H., Shen, W. A Dichotomy for the Weierstrass-type functions. Invent. math. 226, 1057–1100 (2021). https://doi.org/10.1007/s00222-021-01060-2, M1 X4 y# [7 S2 x. V8 l
复旦大学,上海数学中心* F2 V1 l N' Q
Deng, Y., Nahmod, A.R. & Yue, H. Random tensors, propagation of randomness, and nonlinear dispersive equations. Invent. math. (2021). https://doi.org/10.1007/s00222-021-01084-8
6 H1 c/ A$ K/ |上海科技大学(与国外机构合作)
! l% S: x$ Z; P2 [2 x. v/ A, wZhou, Y. Quasimap wall-crossing for GIT quotients. Invent. math. (2021). https://doi.org/10.1007/s00222-021-01071-z$ f4 ~5 o e, L c. n3 }/ M
上海数学中心
3 K+ Y! z. w& u/ y |Chen, Q., Janda, F. & Ruan, Y. The logarithmic gauged linear sigma model. Invent. math. 225, 1077–1154 (2021). https://doi.org/10.1007/s00222-021-01044-2
" {3 Q/ x6 D. M9 T% w8 u, p* e浙江大学(与国外机构合作)
, m4 s; C" X% J( i1 ^Chen, G. The J-equation and the supercritical deformed Hermitian–Yang–Mills equation. Invent. math. 225, 529–602 (2021). https://doi.org/10.1007/s00222-021-01035-3. I& ]/ |( U# b# c5 y, {
中国科学技术大学* d Z' a. ~' K8 [6 G# B% Q6 V# s
Chan, K.Y. Homological branching law for <span class="MathJax" id="MathJax-Element-1711-Frame" tabindex="0" data-mathml="(GLn+1(F),GLn(F))" role="presentation" style="box-sizing: inherit; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">(GLn+1(F),GLn(F))(GLn+1(F),GLn(F)): projectivity and indecomposability. Invent. math. 225, 299–345 (2021). https://doi.org/10.1007/s00222-021-01033-5/ T9 a4 j7 H6 U$ F8 U" c: y- O
上海数学中心
- S+ B. y6 G/ `- }Gekhtman, I., Gerasimov, V., Potyagailo, L. et al. Martin boundary covers Floyd boundary. Invent. math. 223, 759–809 (2021). https://doi.org/10.1007/s00222-020-01015-z
. M6 L) _6 n# }" A9 }1 h0 q北京国际数学中心(与国外机构合作)" D2 I! L8 W; b* r& z6 T8 y
Kurinczuk, R., Skodlerack, D. & Stevens, S. Endo-parameters for p-adic classical groups. Invent. math. 223, 597–723 (2021). https://doi.org/10.1007/s00222-020-00997-0
3 X" S% m" ], H+ D R1 P上海科技大学(与国外机构合作)
9 E. T* q! M$ g& E清华大学丘成桐数学中心
, Z0 s; b& y! M9 y. U# ?' d* uActa Mathematica The special fiber of the motivic deformation of the stable homotopy category is algebraic[size=13.3333px]Pages: 319 – 407 上海数学中心(与国外机构合作)
& F6 G( p1 f, k" LJournal Of The American Mathematical Society
! p6 h! A' a9 h: ]On the constant scalar curvature Kähler metrics (I)—A priori estimates https://doi.org/10.1090/jams/967 中国科学技术大学(Supported by NSF)(与其他机构合作) On the constant scalar curvature Kähler metrics (II)—Existence results https://doi.org/10.1090/jams/966 中国科学技术大学(Supported by NSF)(与其他机构合作) Algebraicity of the metric tangent cones and equivariant K-stability https://doi.org/10.1090/jams/974 北京国际数学中心(第一单位)(与其他机构合作) q' j3 z, ~2 S2 b N0 b/ C7 S& o1 @
1 [1 _& D# V L" \9 g
Annals of Mathematics Rectifiability of singular sets of noncollapsed limit spaces with Ricci curvature bounded below 浙江大学(与国外机构合作) Isolation of cuspidal spectrum, with application to the Gan–Gross–Prasad conjecture 1 }/ O, o Q. D
Polynomial structure of Gromov–Witten potential of quintic 33-folds. a* n4 w, \# S0 O
https://doi.org/10.4007/annals.2021.194.3.15 B1 [$ m$ G( k6 e; a; s+ R
香港科技大学,北京国际数学中心,上海数学中心
1 k7 E9 `7 t1 K3 q$ T1 {6 z
9 f+ P8 b2 L B4 xGlobal regularity for the Monge-Ampère equation with natural boundary condition
/ ~1 x' s4 ], ^/ D, y5 }https://doi.org/10.4007/annals.2021.194.3.4
9 P2 |; r% z8 M中国科学技术大学(与国外机构合作)
; l% K! `; U7 r1 W% m0 M0 O. m9 r# Z$ B# A! B/ X! B* Y
Chow groups and LL-derivatives of automorphic motives for unitary groups
6 H0 D5 b+ L) w8 c$ t1 rhttps://doi.org/10.4007/annals.2021.194.3.6- e+ r' u5 }: E; d
浙江大学(与国外机构合作) 5 H: [% J* J. A
6 @( {- N0 C7 S0 ^# w% f. |. [. H2 S" ^+ b6 e+ F
+ g3 \! Y6 c! R0 F& ^3 H |