本帖最后由 可乐加盐 于 2021-12-25 13:37 编辑
: h' _" V# U+ Z' V8 v& P# O
2 ^, Q% m' x& ~+ {, s, Y: SInventiones mathematicae0 ^0 Q. h3 g( W1 n i- W
Ren, H., Shen, W. A Dichotomy for the Weierstrass-type functions. Invent. math. 226, 1057–1100 (2021). https://doi.org/10.1007/s00222-021-01060-2/ x/ U, d# x/ E4 a" R
复旦大学,上海数学中心, f7 Y+ W/ t. i! z H
Deng, Y., Nahmod, A.R. & Yue, H. Random tensors, propagation of randomness, and nonlinear dispersive equations. Invent. math. (2021). https://doi.org/10.1007/s00222-021-01084-8
) Z1 r$ G" V7 f% j- x' s7 {8 r上海科技大学(与国外机构合作)
# n4 h% g4 o7 L: H2 p0 ^Zhou, Y. Quasimap wall-crossing for GIT quotients. Invent. math. (2021). https://doi.org/10.1007/s00222-021-01071-z4 k# }6 I2 @% H( B9 ]! Y6 z% V
上海数学中心
; Q2 P- T. c0 w* j+ _Chen, Q., Janda, F. & Ruan, Y. The logarithmic gauged linear sigma model. Invent. math. 225, 1077–1154 (2021). https://doi.org/10.1007/s00222-021-01044-2$ p( ?' f3 {+ E
浙江大学(与国外机构合作)+ Z( ?5 G* i1 A" V! u3 L
Chen, G. The J-equation and the supercritical deformed Hermitian–Yang–Mills equation. Invent. math. 225, 529–602 (2021). https://doi.org/10.1007/s00222-021-01035-3
9 r/ p: ^. z9 q* t7 k中国科学技术大学
6 ^7 u6 s3 [2 U. D0 }Chan, K.Y. Homological branching law for <span class="MathJax" id="MathJax-Element-1711-Frame" tabindex="0" data-mathml="(GLn+1(F),GLn(F))" role="presentation" style="box-sizing: inherit; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">(GLn+1(F),GLn(F))(GLn+1(F),GLn(F)): projectivity and indecomposability. Invent. math. 225, 299–345 (2021). https://doi.org/10.1007/s00222-021-01033-5
( S @1 n: n0 u: F! R1 f6 r1 E) {6 e上海数学中心
; G1 O( M7 H; t: K Z) n- G: B& |Gekhtman, I., Gerasimov, V., Potyagailo, L. et al. Martin boundary covers Floyd boundary. Invent. math. 223, 759–809 (2021). https://doi.org/10.1007/s00222-020-01015-z
2 P( G5 E! ]0 ~( z1 \" Q0 Y北京国际数学中心(与国外机构合作)
% _$ R3 z! c! i- @7 w: |Kurinczuk, R., Skodlerack, D. & Stevens, S. Endo-parameters for p-adic classical groups. Invent. math. 223, 597–723 (2021). https://doi.org/10.1007/s00222-020-00997-0
d @6 m. A( e$ w1 r8 M. c上海科技大学(与国外机构合作)( q9 c0 T7 f) z- j" ^" m7 c
清华大学丘成桐数学中心 $ A; N/ l4 C3 }! |+ X. L o
Acta Mathematica The special fiber of the motivic deformation of the stable homotopy category is algebraic[size=13.3333px]Pages: 319 – 407 上海数学中心(与国外机构合作) 8 M* B+ E+ `$ \( ?: @: V- ~ z. V
Journal Of The American Mathematical Society
/ R: g3 D8 o& b7 ?0 SOn the constant scalar curvature Kähler metrics (I)—A priori estimates https://doi.org/10.1090/jams/967 中国科学技术大学(Supported by NSF)(与其他机构合作) On the constant scalar curvature Kähler metrics (II)—Existence results https://doi.org/10.1090/jams/966 中国科学技术大学(Supported by NSF)(与其他机构合作) Algebraicity of the metric tangent cones and equivariant K-stability https://doi.org/10.1090/jams/974 北京国际数学中心(第一单位)(与其他机构合作)
' r$ w7 v2 [4 G" E/ o7 o: s
5 E9 o9 {* i1 {9 F9 ]- KAnnals of Mathematics Rectifiability of singular sets of noncollapsed limit spaces with Ricci curvature bounded below 浙江大学(与国外机构合作) Isolation of cuspidal spectrum, with application to the Gan–Gross–Prasad conjecture
8 s+ E" ?) R- GPolynomial structure of Gromov–Witten potential of quintic 33-folds
; K2 v# W3 B) t6 \, T5 ]4 P* nhttps://doi.org/10.4007/annals.2021.194.3.1
8 m. X; i+ K; [: t香港科技大学,北京国际数学中心,上海数学中心
+ e, ] E+ u1 ^- d5 ]6 K2 e" I9 |% V1 k& H) O7 Z& r8 Q+ l8 n
Global regularity for the Monge-Ampère equation with natural boundary condition% q2 }3 P+ Y6 d- ?6 M( k4 `( P/ Z
https://doi.org/10.4007/annals.2021.194.3.4
. Y8 U' ^) J1 k0 @8 w! Z: g4 y中国科学技术大学(与国外机构合作) 8 c7 d/ U1 V# ^. [5 [0 d- q
& c5 q" @5 I5 c& D' m' ?4 h
Chow groups and LL-derivatives of automorphic motives for unitary groups0 M" _- \$ ~. A, m$ Q7 B h4 B
https://doi.org/10.4007/annals.2021.194.3.67 A0 M8 D) `0 \! z; W4 Q C4 c3 a
浙江大学(与国外机构合作) , m6 }# F+ P( @* \% u
5 H9 G8 f# }. m- ^% p( v; U9 `8 D( |& e# A( g! j( ?1 ?
% }, C2 N) n9 r. ]8 t% G; V0 J$ y
|